IST EDELSTAHL MAGNETISCH?

Übersicht über unsere magnetischen Edelstähle

Legierungen geben Auskunft über die Bearbeitungsmöglichkeiten von Stahl und Edelstahl, aber auch über die magnetischen Eigenschaften. Eisen, Kobalt und Nickel sind beispielsweise die einzigen Metalle die in Reinform magnetisch sind.

Nahezu jeder Werkzeugstahl ist magnetisch, da Stahl eine Legierung aus Eisen und Kohlenstoff ist und Eisen bekanntlicherweise gute magnetische Eigenschaften hat. Für Edelstahl gilt, aufgrund zusätzlicher Legierungen wie beispielsweise Chrom, dass sie zwar häufig sehr korrosionsbeständig sind, jedoch nicht immer magnetisch. Somit ist nicht gesagt, dass man einfach per Magnet rausfinden kann, ob es sich um einen Edelstahl handelt oder nicht. Entscheidend ist die Stahlgruppe bzw. das Gefüge des Stahls - denn je nach Gefüge kann auch Edelstahl magnetische oder nicht magnetische Eigenschaften haben.

Austenitische Werkstoffe wie 1.4301 (der gebräuchlichste austenitische Stahl), 1.4404 oder 1.4571 sind für gewöhnlich unmagnetisch. Im Gegensatz dazu ist ferritischer Edelstahl, wie z.B. 1.4112, magnetisch.

In einigen Anwendungsgebieten ist es unerlässlich, dass ein Edelstahl nicht nur korrosionsbeständig ist, sondern zudem auch magnetisch, wie beispielsweise bei der Herstellung von induktionsgeeignetem Kochgeschirr. Wiederum gibt es andere Bereiche, bei denen der Magnetismus negative Auswirkungen haben kann, wie z.B. in der Elektroindustrie. Medizintechnik oder Luftfahrt.

Zurück zum Gefüge: Nichtrostender Edelstahl lässt sich in drei sogenannte Gefüge einteilen: Austenitischer, ferritischer und martensitischer Stahl.

Je nachdem welche Zusammensetzung das jeweilige Gefüges hat, variieren die magnetischen Eigenschaften und der Anteil an Eisen kommt ins Spiel. Zusätzlich kann auch die Verarbeitung (z.B. Verformung oder Umformung) von nichtrostenden Edelstählen dazu führen, dass sich das Gefüge ändert und magnetisiert wird. Unter hohem Druck können sich magnetische Eigenschaften ändern. In diesem Fall kann martensitischer Stahl entstehen. Magnetische Bereiche treten in der Regel jedoch nur an Stellen mit sehr starker Umformung auf.

Die Magnetisierbarkeit der Werkstoffe hat für gewöhnlich keinen Einfluss auf die Qualität des Edelstahls.

Eine Übersicht, welche unserer Edelstähle magnetisch oder magnetisierbar sind, finden Sie in der Tabelle.

WERKSTOFF	ALTERNATIVE BEZEICHNUNG	STAHLGRUPPE	MAGNETISCH	MAGNETISIERBAR*
1.4112	X90CrMoV18 , AISI 440B	Martensitischer Chrom-Stahl	ja	ja
1.4122	X39CrMo17-1 , AISI 316	Martensitischer Chrom-Stahl	ja	ja
1.4301	X5CrNi18-10 , AISI 304, V2A, 18-10	Austenitischer Chrom-Nickel Stahl	nein	sehr gering
<u>1.4305</u>	X8CrNiS18-9, AISI 303, V2A, Automatenstahl	Austenitischer Chrom-Nickel Stahl	nein	sehr gering
1.4306	X2CrNi19-11 , AISI 304L, V2A	Austenitischer Chrom-Nickel Stahl	nein	sehr gering
1.4307	X2CrNi18-9 , AISI 304 L, V2A	Austenitischer Chrom-Nickel Stahl	nein	sehr gering
1.4404	X2CrNiMo17-12-2 , AISI 319L, V4A	Austenitischer Chrom-Nickel Stahl	nein	sehr gering
1.4435	X2CrNiMo18-14-3 , AISI 316L, V4A	Austenitischer Chrom-Nickel Stahl	nein	sehr gering
1.4462	X2CrNiMoN22-5-3, AISI 318LN, Duplex-Stahl, V4A	Austenitisch-ferritischer Chrom-Nickel-Stahl	ja	ja
1.4541	X6CrNiTi18-10 , AISI 321, V2A	Austenitischer Chrom-Nickel Stahl	nein	gering
1.4571	X6CrNiMoTi17-12-2, AISI 316Ti, V4A	Austenitischer Chrom-Nickel Stahl	schwach	gering

^{*} bei Bearbeitung, Verformung, Druck o.ä. kann eine sehr geringe Magnetisierbarkeit möglich sein

